课程号:00137993
课程名称:复变函数(实验班)
开课学期:春季
学分: 3
先修课程:数学分析、高等代数
基本目的: 复变函数是为数学学院各个专业开设的一门重要基础课. 通过课程学习使得同学理解和掌握复变函数的基本理论,进一步加强对数学抽象思维, 逻辑推理和计算能力的训练,体会复变函数所表现的数学理论的优美之处,了解复变函数理论的相关应用。
内容提要:
一. 复分析的预备知识 (约5学时)
1.复数和复平面, 完备性, 扩充复平面 2.复平面上的函数: 连续函数 全纯函数 幂级数 3. 复导数, 导数的几何意义, cauchy-riemann方程 4.曲线积分
二.cauchy定理及其应用和幂级数 (约12学时)
1. goursat定理 2.原函数的局部存在性, cauchy定理, 全纯函数的局部幂级数展开 3.一些积分的估计4. cauchy积分公式 5.应用: 全纯函数的唯一性定理, 平均值定理, 最大模原理, morera定理, 全纯函数的收敛, 单连通区域上的全纯函数, schwarz反射原理, runge逼近定理, 全纯函数的解析延拓, 单值性定理
三.亚纯函数及其对数(约12学时)
1. laurent级数, 零点和极点2. 留数公式 3. 孤立奇点的分类和亚纯函数 4. rouche定理, 辐角原理 5. 同伦和单连通区域, 复对数 6. 全纯函数的开映射定理 7. 调和函数:poisson核与poisson积分
四. 整函数(约6学时)
1. jensen公式 2. 有限级函数 3. weierstrass无穷乘积 4. hadamard分解定理
五. 共形映射(约9学时)
1.共形等价性 2. dirichlet问题 3. schwarz引理; 4.圆盘和上半平面的自同构 5. montel定理 6. riemann映照定理 7. schwarz-christoffel积分 8. riemann映射定理边界行为
剩余学时可以选择选讲内容
选讲 傅里叶变换
1.类 2.类上的傅里叶变换 3.paley-wiener定理
选讲 gamma函数和zeta函数
1.gamma函数:解析延拓,gamma函数的性质 2. zeta函数:函数方程和解析延拓
选讲 zeta函数和素数定理
1.zeta函数的零点:的估计 2. 函数和的约化:的渐进性质的证明,求和的可交换性的注记
选讲 函数的应用
1.雅可比函数的乘积公式2. 生成函数3. 平方和定理:二平方和定理,四平方和定理
附录a:渐近性
1.bessel函数2. laplace方法; stirling公式3. airy函数4. 配分函数
附录b:单连通性和jordan曲线定理
1.单连通性的等价公式 2. jordan曲线定理:cauchy定理的一般形式的证明
教学方式:每周授课3学时
教材与参考书:
1)谭小江, 伍胜健: 复变函数简明教程,北京大学出版社。
2)stein, e. m.: complex analysis, princeton university press. new jersey.2003.
3)龚升: 简明复分析, 北京大学出版社。
4)ahlfors,l.v.: complex analysis,3rd ed. mograw-hill.newyork.1979.
学生成绩评定方法:作业10%,期中考试40%,期末考试50%。
课程修订负责人:关启安